Your Genome? Which One?

One thing is clear at this stage: the assumption that each individual has a unique genome has been overthrown to some extent. Think how this might impact common evolutionary studies. For years, evolutionists have claimed small differences between human and chimpanzee genomes. What if the percent difference is a function of the source cells used? Remember, the Yale team found differences between cells in the same organ — human skin. If the percent difference grows or shrinks depending on the source, any conclusions about human-chimp similarities would prove unreliable.


It’s also not clear yet whether geneticists will be able to mask the differences between cells to establish an individual’s genome (to say nothing of a species’s genome) as a useful concept. Results would appear to be a function of investigator choice. Say, for instance, that an evolutionist chooses to compare genes of a particular kind of blood cell between species. If the CNV’s and SNP’s vary significantly from blood cell to blood cell within the individual, the results will be skewed. Mixing or averaging the maps of numerous cells, though, risks creating a theoretical construct that does not correspond to reality. Which cells should be averaged? Will the averages converge or diverge, depending on which cells are selected? Philosophers of science can have fun with this one.

Claims about evolutionary similarities and differences based on genetics must be taken with a grain of salt from now on. Perhaps the feared “profound implications” will prove inconsequential. If nothing else, though, the Yale study provides an example of conceptual superstructures built on shaky assumptions and “prevailing wisdom.” As those of us in the intelligent design community know, what prevails at a given moment is not necessarily wise.